RATIONAL DIVISION ALGEBRAS AS SOLVABLE CROSSED PRODUCTS

BY JACK SONN

ABSTRACT

Let G be a finite group. If there exists a division algebra central over the rationals \mathbf{Q} which is a crossed product for G, then according to a theorem of Schacher, the Sylow subgroups of G are all metacyclic.' The converse is proved here to hold in the following cases: (1) G metacyclic; (2) The Sylow 2-subgroups of G are cyclic (this implies G solvable); (3) G is solvable and the Sylow 2-subgroups of G are dihedral of order larger than 8.

Let D be a division algebra finite dimensional and central over \mathbf{Q} , the rational number field. D is a crossed product for a group G if there is a maximal subfield K of D, Galois over Q, whose Galois group $G(K/\mathbb{Q})$ is isomorphic to G. It is well known that D is a crossed product for the cyclic group C_n of order n, where the dimension of D over Q is n^2 . Schacher [8] posed the question as to which other groups are possible, i.e., for which groups G does there exist a division algebra D finite dimensional and central over Q, such that D is a crossed product for G? Or more briefly, which G are "Q-admissible"? The following arithmetic criterion [8, 2.1, 2.6] is necessary and sufficient for such G: there exists a Galois extension K/\mathbb{Q} with $G(K/\mathbb{Q}) \simeq G$ such that for every prime p dividing the order of G, there are at least two rational primes q_1, q_2 and divisors Q_1 , Q_2 of q_1 , q_2 respectively in K, such that the decomposition groups $G(Q_1)$ and $G(Q_2)$ contain a Sylow p-subgroup of $G(K/\mathbb{Q})$. As a corollary [8, th. 4.1], if G is Q-admissible then the Sylow subgroups of G are metacyclic. Thus far, the following such groups have been proved Q-admissible: abelian metacyclic groups, the symmetric groups S_3 , S_4 , S_5 [8], A_4 [1], A_5 , odd order nilpotent metacyclic groups [2], SL(2, 5) [11].

Let us call a finite group G Sylow-metacyclic if all its Sylow subgroups are

Received February 1, 1980

[†] In this paper M is called *metacyclic* if it contains a cyclic normal subgroup N such that M/N is cyclic.

metacyclic. In this paper we apply Neukirch's theory of the embedding problem with prescribed local solutions to prove that the following solvable Sylow-metacyclic groups are **Q**-admissible:

- (1) metacyclic groups,
- (2) Sylow-metacyclic grups having normal 2-complements; in particular, Sylow-metacyclic groups whose Sylow 2-subgroups are cyclic, and solvable Sylow-metacyclic groups whose Sylow 2-subgroups are dihedral of order larger than 8.

There are many Sylow-metacyclic groups, both solvable and nonsolvable, for which the question is still open. The smallest solvable example is the semidirect product of the quaternion group of order 8 with an automorphism of order 3. The finite simple groups PSL(2, p) (p prime) are all Sylow-metacyclic; for p > 5 the question is open.

THEOREM 1. Let G be a finite metacyclic group, N a positive integer. Then there exists a set S of N rational primes and a Galois extension K/\mathbb{Q} such that $G(K/\mathbb{Q}) \simeq G$ and for every $p \in S$, $G(K_p/\mathbb{Q}_p) \simeq G$, where \mathbb{Q}_p denotes the field of p-adic rational numbers, and K_p denotes the completion of K at any divisor of p in K.

PROOF. We first reduce the proof to the case G is a semidirect product of two cyclic groups. Let G be the given metacyclic group. Then G is generated by two elements x, y, and the cyclic subgroup Y generated by y is normal in G. Let X be the cyclic subgroup generated by x. X acts on Y by conjugation in G. Let G_1 be the semidirect product of X and Y with respect to this action. There is a natural epimorphism $G_1 \rightarrow G$ given by $(x^i, y^i) \mapsto x^i y^i$. Suppose the theorem holds for G_1 . Then there is a set S of N primes of Q and a Galois extension K_1/Q with $G(K_1/Q) \cong G_1$ such that for every $p \in S$, $G(K_{1,p}/Q_p) \cong G_1$. We therefore have an epimorphism $G(K_1/Q) \rightarrow G$, the fixed field K of whose kernel is Galois over Q with $G(K/Q) \cong G$. For $p \in S$, $G(K_p/Q_p)$ is isomorphic to a subgroup of G(K/Q). On the other hand, $[K_1:Q] = [K_{1,p}:Q_p] = [K_{1,p}:K_p][K_p:Q_p] \cong [K_1:K][K:Q] = [K_1:Q]$, hence $[K_p:Q_p] \cong [K:Q]$. Thus $G(K_p/Q_p) \cong G(K/Q) \cong G$, for every $p \in S$.

We assume therefore that G is generated by x and y with defining relations

$$x^{m} = y^{n} = 1, \qquad x^{-1}yx = y'.$$

Let μ_n denote the *n*-th roots of unity. By Dirichlet's density theorem [5, p. 138] there are infinitely many rational primes $q \equiv 1 \pmod{m}$. Hence we may choose a cyclic extension T/\mathbb{Q} of degree m such that $T \cap \mathbb{Q}(\mu_n) = \mathbb{Q}$. By the

Frobenius density theorem [5, p. 134], there exist infinitely many rational primes p satisfying $p \equiv t \pmod{n}$, and p remains prime in T. Indeed, $G(T(\mu_n)/\mathbb{Q}) \simeq G(T/\mathbb{Q}) \times G(\mathbb{Q}(\mu_n)/\mathbb{Q})$. Let σ generate $G(T/\mathbb{Q})$ and let τ be the automorphism of $\mathbb{Q}(\mu_n)/\mathbb{Q}$ which raises μ_n to the power t. The density theorem states that there are infinitely many p whose Artin symbols are (σ, τ) . These p satisfy the desired conditions. Let S be any N of these. For each $p \in S$, T_p/\mathbb{Q}_p is unramified of degree m, where T_p denotes the completion of T at a divisor of p in T. Thus T_p contains the $(p^m - 1)$ -th roots of unity. Since $t^m \equiv 1 \pmod{n}$ and $p \equiv t \pmod{n}$, we have $p^m \equiv 1 \pmod{n}$. Hence T_p contains the n-th roots of unity, and $T_p(p^{1/n})$ is Galois over \mathbb{Q}_p with Galois group $\approx G$.

We construct the desired field K by solving an *embedding problem with* prescribed local solutions at the primes $p \in S$. Let $X \simeq G(T/\mathbb{Q})$ be a fixed isomorphism, relative to which we obtain an epimorphism $e: G \to G(T/\mathbb{Q})$. Our embedding problem is to construct a Galois extension K/\mathbb{Q} , $K \ge T$ such that

- (i) $G(K/\mathbb{Q}) \simeq G$ and this isomorphism causes e to coincide with the restriction map $G(K/\mathbb{Q}) \to G(T/\mathbb{Q})$, and
- (ii) for each $p \in S$, $K_p = T_p(p^{1/n})$, where K_p is the completion of K at any divisor of p in K.

Let G_Q denote the absolute Galois group $G(\tilde{\mathbb{Q}}/\mathbb{Q})$ of \mathbb{Q} ($\tilde{\mathbb{Q}}$ = algebraic closure of \mathbb{Q}). The restriction map $G_Q \to G(T/\mathbb{Q}) \simeq X$ makes Y a G_Q -module, and by restriction a G_{Q_p} -module for each $p \in S$. Let $H^1(G_Q, Y)$ denote the first cohomology group of (G_Q, Y) . Now there exists a K satisfying (i) by a theorem of Scholz [9; 4, p. 101]. Therefore by a theorem of Neukirch [6, 2.5] there is a K satisfying (i) and (ii) provided the mapping

$$H^1(G_{\mathbb{Q}}, Y) \to \prod_{p \in S} H^1(G_{\mathbb{Q}_p}, Y)$$

is surjective, where the arrow denotes the product of the restriction maps over $p \in S$.

Set $Y' = \operatorname{Hom}(Y, \mu_n)$. G_Q acts on Y' by the rule $f^z(y) = f(y^{z^{-1}})^z$, $y \in Y$, $z \in G_Q$. Let $\mathbf{Q}(Y') = T'$ denote the fixed field of the subgroup G_Q acting trivially on Y'. Then $T' \subseteq T(\mu_n)$. Let G' = G(T'/Q), G'_p the decomposition group of a prime divisor of p in T'. Then $G'_p \simeq G(T'_p/Q_p)$. Also $T'_p \subseteq (T(\mu_n))_p = T_p(\mu_n) = T_p$. Hence G'_p is cyclic for each $p \in S$. It follows from [6, 6.4(b)] that the cohomology map above is surjective, q.e.d.

Taking N = 2, we see that Schacher's arithmetic criterion for Q-admissibility is fulfilled for all metacyclic groups, hence

COROLLARY. Every finite metacyclic group is Q-admissible.

Let G be a finite group, p a prime dividing |G|. A normal p-complement in G is a normal complement of a Sylow p-subgroup of G, i.e. a normal subgroup of G of order prime to p and index a power of p.

THEOREM 2. Let G be a Sylow-metacyclic group having a normal 2-complement. Then G is \mathbb{Q} -admissible.

PROOF. Let H be a Sylow 2-subgroup of G, N the normal 2-complement. Then G = HN, $H \cap N = 1$. Since H is metacyclic, by Theorem 1, H is **Q**-admissible. Accordingly let K/\mathbb{Q} be Galois with $G(K/\mathbb{Q}) \cong H$ and let $q_i = q_i(2)$, i = 1, 2 be two odd primes such that $G(K_{q_i}/\mathbb{Q}_{q_i}) \cong H$. From the proof of Theorem 1 we may assume also that $K \cap \mathbb{Q}(\mu_n) = \mathbb{Q}$ and $q_i \nmid n$, i = 1, 2, n = |N|.

Now let p be a prime dividing |N|, N_p a p-Sylow subgroup of N. As in the proof of Theorem 1, we can choose primes $q_i(p)$, i = 1, 2 such that N_p is a Galois group over $\mathbf{Q}_{q(p)}$, i = 1, 2. The conditions that determine $q_i(p)$ can be expressed by prescribing a value of the Frobenius symbol in a field $\mathbf{Q}(\mu_{p'})$, where t is some positive integer. By choice of K,

$$\mathbf{Q}(\mu_{p'}) \cap K = \mathbf{Q},$$

hence by the Frobenius density theorem, we may assume that $q_i(p)$ splits completely in K, i = 1, 2. We may also assume that the set of primes $S = \{q_i(p): i = 1, 2; p \mid |N|\}$ is distinct.

Consider the embedding problem given by $f: G \to G/N \cong G(K/\mathbb{Q})$. A solution is any homomorphism $g: G(\tilde{\mathbb{Q}}/\mathbb{Q}) \to G$ such that $fg = \operatorname{res}(\tilde{\mathbb{Q}}/K)$. Since f splits, there is a trivial solution. For each $q = q_i(p) \in S$, let $L(q)/\mathbb{Q}_q$ be a Galois extension with Galois group N_p . Since $K_q = \mathbb{Q}_q$ for $q \in S$, L(q) is a solution field to the corresponding local embedding problem. By a theorem of Neukirch [7, p. 148], there is a global surjective solution L/\mathbb{Q} to the embedding problem whose localizations L_q coincide with L(q) for each $q \in S$. (Note that N is solvable, e.g. by the Feit-Thompson theorem.) Thus L/\mathbb{Q} satisfies the Schacher criterion for \mathbb{Q} -admissibility of G, q.e.d.

COROLLARY. Any Sylow-metacyclic group whose 2-Sylow subgroups are cyclic is Q-admissible.

Proof. Such a group G has a normal 2-complement [10, p. 138].

We are grateful to David Chillag for helpful group-theoretic conversations. In particular, he pointed out to us the work of Gorenstein and Walter [3] on finite

groups with dihedral Sylow 2-subgroups. The main theorem of [3] implies immediately that if G is a solvable Sylow-metacyclic group whose Sylow 2-subgroups are dihedral of order greater than 8, then G has a normal 2-complement, and therefore is Q-admissible by Theorem 1.

NOTE. D. Chillag has communicated to the author that every finite solvable Sylow-metacyclic group has a normal {2,3}-Hall complement. In view of this, Theorem 2 above can be transformed into a reduction theorem, which yields in particular the following result: every finite solvable Sylow-metacyclic group whose {2,3}-Hall subgroups are metacyclic is Q-admissible. Details will appear elsewhere.

REFERENCES

- 1. B. Gordon and M. Schacher, Quartic coverings of a cubic, J. Number Theory, to appear.
- 2. B. Gordon and M. Schacher, The admissibility of A₅, J. Number Theory 11 (1979), 498-504.
- 3. D. Gorenstein and J. W. Walter, Finite groups whose Sylow 2-subgroups are dihedral, J. Algebra 2 (1965), 85-151.
 - 4. K. Hoechsmann, Zum Einbettungsproblem, J. Reine Angew. Math. 229 (1968), 81-106.
 - 5. G. J. Janusz, Algebraic Number Fields, Academic Press, 1973.
- 6. J. Neukirch, Uber das Einbettungsproblem der algebraische Zahlentheorie, Invent. Math. 21 (1973), 59-116.
 - 7. J. Neukirch, On solvable number fields, Invent. Math. 53 (1979), 135-164.
 - 8. M. Schacher, Subfields of division rings I, J. Algebra 9 (1968), 451-477.
- 9. A. Scholz, Über die Bildung algebraischen Zahlkörper mit auflosbarer galoischer Gruppe, Math. Z. 30 (1929), 332-356.
 - 10. W. R. Scott, Group Theory, Prentice-Hall, N.J., 1964.
 - 11. J. Sonn, SL(2,5) and Frobenius Galois groups over Q, Canad. J. Math., to appear.

DEPARTMENT OF MATHEMATICS

TECHNION — ISRAEL INSTITUTE OF TECHNOLOGY HAIFA, ISRAEL